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Abstract

Regulated neurotransmitter release depends on a precise sequence of events that lead to repeated cycles of exocytosis and endocytosis.
These events are mediated by a series of molecular interactions among vesicular, plasma membrane, and cytosolic proteins. An emerging
theme has been that molecular chaperones may guide the sequential restructuring of stable or transient protein complexes to promote a
temporal and spatial regulation of the endo- and exocytotic machinery and to ensure a vectorial passage through the vesicle cycle.
Chaperones, specialized for a few substrates, are ideally suited to participate in regulatory processes that require some molecular dexterity
to rearrange conformational or oligomeric protein structures. This article emphasizes the significance of three molecular chaperone systems
in regulated neurotransmitter release: the regulation of soluble NSF attachment protein receptor (SNARE) complexes by N-ethylmaleimide-
sensitive factor (NSF) and the soluble NSF attachment protein (SNAP), the uncoating of clathrin-coated vesicles by the 70 kDa heat-shock
cognate protein (Hsc70), and the regulation of SNARE complex-associated protein interactions by cysteine-string protein and Hsc70.
© 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Chemical synaptic transmission at synapses is the dom-
inant mode of transferring information from one neuron to
another. Quantal packets of neurotransmitter are stored in
synaptic vesicles that fuse with the presynaptic membrane
to secrete their contents onto the postsynaptic target cell.
Temporal fidelity for rapidly changing signals is attained by
coupling nerve activity and exocytosis on a sub-millisecond
scale such that depolarization-dependent Ca21 influx
through Ca21 channels triggers vesicle fusion. Sustained
release is ensured by trafficking synaptic vesicles through
repeated cycles of exocytosis and endocytosis [1]. The
stages leading to exocytosis include loading synaptic vesi-
cles with neurotransmitter, targeting and docking vesicles to
release sites, priming, triggering Ca21-dependent fusion,

and membrane fusion. After exocytosis, vesicle membranes
and most of their proteins are rapidly recaptured by endo-
cytosis and locally recycled to replenish releasable vesicle
pools. A combination of biochemical and genetic ap-
proaches by many laboratories have led to the identification of
many synaptic proteins and the elaboration of molecular mod-
els describing exocytotic and endocytotic mechanisms [2].

Neurotransmitter exocytosis is a complex and tightly
regulated process that involves sequential interactions of
many synaptic proteins. The key event, vesicular membrane
fusion, is apparently mediated by the SNARE or core com-
plex. SNARE proteins are associated with vesicles (v-
SNAREs) or plasma membranes (t-SNAREs) and form a
stable complex [3,4] that includes synaptobrevin/VAMP
[5–7], syntaxin [8], and SNAP-25 [9]. These proteins inter-
act with each other in a parallel 4-helix bundle that is
structurally conserved and bridges apposed membranes
[10–12]. Parallel protein binding at the N-termini initiates
complex formation, and further zippering of coiled-coils
pushes the vesicle and the plasma membrane into close
contact, presumably driving the process of fusion [13–15].
The fusogenic activity of the SNARE complex has been
revealed by studies using recombinant neuronal SNAREs
reconstituted in separate phospholipid bilayer vesicles that
form trans-SNARE complexes linking both bilayers [16].
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Assembly of suchtrans-SNARE complexes forms a meta-
stable state at 0–4° from which bilayer fusion occurs after
warming to 37° [16–18]. Regulated exocytosis, however,
requires further interactions of the core complex with nu-
merous synaptic proteins [19–25].

Endocytosis and synaptic vesicle recycling is apparently
mediated by at least two basic pathways: receptor-mediated
endocytosis via coated pits [26], and coupled exo- and
endocytosis [27]. A third model suggests that endosome-
like intermediates of nerve terminals originate by bulk-
uptake of the plasma membrane while vesicle budding takes
place in parallel from the plasmalemma and from these
internalized membranes [28]. Receptor-mediated endocyto-
sis requires the formation of a clathrin coat surrounding the
budding vesicle that is, in part, accomplished by binding of
clathrin adaptor proteins to specific receptors in the vesicle
membrane patch [29–32]. In turn, clathrin triskelions, three-
legged structures composed of three clathrin molecules, are
moved to the membrane where they polymerize to form a
curved polygonal lattice of hexagons and pentagons that
provides the scaffold for a coated pit [33]. After its forma-
tion, the coated pit is pinched off the plasma membrane by
the cooperative action of amphiphysin and the GTPase
dynamin [34–39]. Once internalized, the clathrin coat must
be enzymatically removed, since it prevents further fusion
of the vesicle [40].

The sequential assembly, rearrangement, and disassem-
bly of a series of protein complexes are important features
of current models for vesicle trafficking. Therefore, it is not
surprising that molecular chaperones emerge as important
factors in the synaptic vesicle cycle. Chaperones are collec-
tively known as proteins that recognize denatured proteins
and stabilize partially folded protein intermediates during
polypeptide folding, assembly, and disassembly [41–43]. In
addition to the classical picture of chaperone action, an
emerging theme is that maintaining proper protein interme-
diate states may be crucial for the normal function of many
proteins, especially in signaling pathways that employ se-
quential interactions of transient protein complexes. Spe-
cialized chaperones are ideally suited to participate in reg-
ulatory processes that require some molecular dexterity to
rearrange conformational or oligomeric structures of protein
complexes [44–46]. In the past decade, three synaptic chap-
erone systems, each specialized for a unique set of sub-
strates, have been identified as critical factors in the synaptic
vesicle cycle. Here we discuss the specialized chaperone
activities of SNAP/NSF, auxilin/Hsc70, and CSP/Hsc70,
and their prominent roles to ensure fast and sustained neuro-
transmitter release.

2. Regulation of SNARE complexes by the ATPase
NSF and its cofactor SNAP

NSF was originally identified as a factor that reconsti-
tuted vesicular intra-Golgi transport after inactivation by

NEM [47,48]. The sequence of NSF revealed that it was
homologous to the yeast protein sec18 [49], previously
shown to mediate endoplasmic reticulum (ER) to Golgi
transport [50] and endocytotic vesicle fusion [51]. Later,
NSF was also implicated in synaptic vesicle exocytosis [3,
4]. NSF is conserved from yeast to mammals and contains
two AAA domains, the signature module of AAA ATPases,
which may act as molecular chaperones [52]. The two
homologous domains of NSF each contain an ATP-binding
site, and mutations of either site significantly compromise
the weak intrinsic ATPase activity [53,54].

NSF is primarily a cytosolic protein that requires SNAP
to attach to membranes, and to stimulate its intrinsic
ATPase activity [55–58]. SNAP binds to membrane-asso-
ciated SNAP receptors (SNAREs) including complexed
syntaxin, synaptobrevin, and SNAP-25 [3,4], whereas NSF
will only interact with complexed SNAP [59]. Binding of
NSF to the SNAP–SNARE complex forms the 20S SNARE
complex, and subsequent ATP hydrolysis by NSF dissoci-
ates the complex into monomers [3,4]. Originally, it was
assumed that the energy released by ATP hydrolysis would
also drive membrane fusion [3,4]. Temporal constraints of
neurotransmitter release and the fact that ATP does not
trigger exocytosis prompted a reassessment of this theory
[60,61]. Instead, it has been suggested that NSF and SNAP
may act as molecular chaperones to regulate the conforma-
tion of SNARE complexes by dissociatingcis-SNARE
complexes that are assembled on the same membrane [62].
This raised the possibility that SNAP/NSF may mediate a
post-docking pre-fusion priming step and/or a post-fusion
step to disassemblecis-SNARE complexes. The priming
step could allow the formation of fusion-competenttrans-
SNARE complex, while the post-fusion step could prepare
the cis-SNARE complex for endocytosis [62–65].

Although a chaperone role for NSF and SNAP first
appeared highly speculative, it has been consistently sup-
ported by a series of arguments. Similar to many chaper-
ones, NSF function requires ATP hydrolysis [41,54]. Fur-
thermore, NSF has a low ATPase activity that is stimulated
by binding to the SNAP–SNARE complex [58], similar to
ATP-dependent chaperones whose weak intrinsic ATPase
activity is substantially stimulated by binding to substrate
proteins or co-chaperones [42,66]. Chaperones regulate the
assembly/disassembly of multi-protein complexes by induc-
ing a conformational change in their substrate proteins
[41,42,66]. Consistently, NSF drives the disassembly of the
SNARE complex [3,4], induces a conformational change in
syntaxin [67], and is presumably capable of large confor-
mational motions that may drive SNARE complex disas-
sembly [68,69]. Furthermore, electron micrographs of NSF
show a cylindrical shape reminiscent of molecular chaper-
ones [13]. Recent studies provided surprising evidence that
SNAPs and NSF also interact with glutamate receptors at
the postsynaptic membrane, suggesting that SNAP and NSF
may act as molecular chaperones not only on SNAREs but
also on other proteins [70–76].
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A role for NSF and SNAP in neurotransmitter exocytosis
was originally indicated by their binding to complexed
synaptobrevin, syntaxin, and SNAP-25, since these are pro-
teolytic targets for potent inhibitors of neurotransmission,
the botulinum neurotoxins [77,78]. Direct evidence impli-
cating SNAP in exocytosis came from studies employing
squid,Drosophila,and secretory cell cultures. Presynaptic
injection of recombinant SNAP into the squid giant synapse
enhanced transmitter release, while injection of peptides
that mimic sites of SNAP protein interaction inhibited re-
lease. This inhibition was accompanied by an accumulation
of docked vesicles supporting a post-docking pre-fusion
role. Furthermore, peptide injection also reduced the num-
ber of cytoplasmic vesicles normally surrounding active
fusion sites, indicating a requirement for SNAP in replen-
ishing this vesicle pool [79]. Similar presynaptic injections
of a-SNAP into crayfish neuromuscular junctions also in-
dicated a role in maintaining a fusion competent vesicle
pool [80]. Consistently, studies in chromaffin cells suggest
thata-SNAP may recruit vesicles into the readily releasable
vesicle pool [81–84]. During membrane capacitance mea-
surements, the readily releasable pool appears as a fast
exocytotic burst followed by a slow release component [85].
Injection of a-SNAP into chromaffin cells significantly in-
creased both the exocytotic burst and the slow component
[82]. Expression of dominant-negativea-SNAP inhibited
release in chromaffin cells without affecting the kinetics of
single release events, consistent with a role in priming but
not in vesicle fusion [86].

Studies manipulating NSF in a variety of secretion sys-
tems have revealed defects highly reminiscent of those
obtained with SNAP, suggesting that both proteins act co-
operatively in exocytosis to replenish a readily releasable
vesicle pool by priming vesicles. Presynaptic injection of
inhibitory NSF peptides into the giant squid synapse re-
duced nerve-evoked neurotransmitter release in an activity-
dependent manner, increased the number of docked vesi-
cles, and reduced the number of cytoplasmic vesicles,
suggesting a post-docking pre-fusion role for NSF in exo-
cytosis [87]. InDrosophila,temperature-sensitive paralytic
mutations of thecomatoselocus disrupt dNSF1 [88], caus-
ing an activity-dependent loss of nerve-evoked release [89–
92], and increasing the number of docked vesicles support-
ing a role in vesicle priming [89]. Most importantly, excess
accumulation of the 7S SNARE complex is observed in
comatosemutants, confirming that NSF is required to dis-
assemble the SNARE complex [91,93]. NEM dialysis of
chromaffin cells consistently blocked granule fusion in an
activity-dependent manner, suggesting that inhibition of
NSF disrupts replenishment of a readily releasable vesicle
pool [82]. Interestingly, inhibition of NSF slowed the kinet-
ics of evoked release in both squid andDrosophilasynapses
[87,89]. Nevertheless, it is unlikely that the slower kinetics
are caused by a primary fusion defect, since a similar effect
is observed inDrosophiladynamin mutants that block en-
docytosis and progressively reduce exocytosis [89]. Thus, a

defect in an early step of endocytosis may slow down
exocytosis in both systems.

The physiological evidence that SNAP and NSF mediate
a post-docking pre-fusion priming step in regulated exocy-
tosis to replenish the readily releasable vesicle pool is com-
pelling. In addition, biochemical studies show thatcis-com-
plexes containing NSF, SNAP, and SNAREs will form and
dissociate on the surface of cytoplasmic undocked vesicles
[94]. Studies with reconstituted membranes demonstrate
that SNAP and NSF disassemble recombinantcis-SNARE
complexes on liposomes whiletrans-SNARE complexes
become functionally resistant to NSF and remain fusogenic,
supporting the idea that NSF anda-SNAP disrupt cis-
SNARE complexes to prime the formation oftrans-SNARE
complexes [95]. An interesting feature of this model (Fig. 1)
is that the overall process is vectorial sincetrans-SNARE
complex formation is an essentially irreversible step. What
accounts for the functional resistance oftrans-SNARE com-
plexes to NSF degradation and how this maintains a readily
releasable vesicle pool without massive spontaneous fusion,
however, remain to be elucidated.

3. Uncoating of clathrin-coated vesicles by Hsc70
and auxilin

The classical example of a molecular chaperone acting at
nerve terminals is the uncoating of clathrin-coated vesicles
during synaptic vesicle recycling. Clathrin is released from

Fig. 1. A multi-step model of SNAP and NSF function in the synaptic
vesicle cycle. SNAP in cooperation with the NSF catalyzes the disassembly
of cis-SNARE complexes (residing on the same membrane) by recruiting
NSF to SNAP–SNARE complexes and subsequently stimulating NSF-
mediated ATP hydrolysis. After docking, the disassembly ofcis-SNAREs
may facilitate transition of vesicles into a releasable pool and prime the
formation of meta-stable, fusion-competenttrans-SNARE complexes.
These, however, are functionally resistant to SNAP/NSF activity. Once the
vesicle has fused with the membrane, collapsing the vesicle membrane into
the plasma membrane,cis-SNARE complexes are formed that are again
sensitive to SNAP/NSF disassembly activity. The disruption ofcis-
SNARE complexes formed after fusion may occur at an early step of
endocytosis to avoid excessive vesicle association of t-SNAREs or at a
subsequent step of vesicle recycling. Modified after Weber and colleagues
[95].
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coated vesicles as triskelions [96,97]. While clathrin triske-
lions spontaneously reassemble into cages resembling coats
of coated vesicles [98], the disassembly of a clathrin coat is
enzyme-mediated and requires an input of energy [99]. The
clathrin-uncoating ATPase catalyzes the strictly ATP-de-
pendent release of clathrin from coated vesicles [100] such
that the hydrolysis of three ATP molecules is required for
the release of one clathrin triskelion [101]. Subsequently,
the clathrin-uncoating ATPase has been identified as Hsc70
[102], a member of the 70-kDa family of stress-induced
heat-shock proteins (Hsp70). As the name implies, this
protein family originally received attention because of their
induced expression during the cellular response to heat and
other stress factors [103–105].

Hsp70 chaperones participate in numerous processes es-
sential to cell survival under both stressed and normal con-
ditions [66]. They are specifically involved in signal trans-
duction [106], apoptosis [107], progression of the cell cycle
[108], circadian rhythms [109], neurodegeneration [110–
113], and intracellular vesicle trafficking [114]. Such ver-
satility is intriguing and raises the question of how Hsp70
chaperone activity is regulated to specifically accomplish
each of these diverse functions.

To understand how Hsp70 chaperones work, one has to
appreciate that the reversible binding and release of sub-
strates are tightly coupled to a cycle of ATP hydrolysis and
conformational change. Substrates have a low affinity for
Hsp70-ATP but a high affinity for Hsp70-ADP, primarily
due to high or low off-rates [66]. Furthermore, the stages of
the ATPase cycle are regulated by a number of co-factors.
The family of “J-domain containing proteins” (here we use
J-proteins) is needed to stimulate the weak intrinsic ATPase
activity of Hsp70 [44–46,115]. Further co-factors, such as
BAG-1 and Hip, facilitate or prevent nucleotide release
[107,116]. DnaJ proteins, containing at least four distinct
domains including the 70 amino acid long J-domain, repre-
sent the prototypical members of the J-protein family. How-
ever, a large subclass of the J-protein family contains only
the J-domain [44, 46], raising the question as to why certain
proteins possess only the J-domain and not the remaining
domains of DnaJ proteins? One intriguing possibility is that,
unlike DnaJ proteins which interact with a wide range of
targets, these J-proteins act as specialized co-chaperones
that recruit Hsp70 to a unique target. This strategy could
promote a spatial and temporal regulation for sequential
reactions by increasing the local concentration of an Hsp70
chaperone in the vicinity of a particular substrate.

Auxilin is one such specialized co-chaperone that spe-
cifically recruits Hsc70 to clathrin coats through its J-do-
main and clathrin-binding domain [117–119]. Auxilin was
originally identified as a minor assembly protein that bound
to clathrin triskelions and induced clathrin assembly into
regular baskets [120]. Further analysis showed that auxilin
acts as an essential cofactor of Hsc70 to dissociate clathrin
coats by binding to assembled clathrin lattices and subse-
quently recruiting Hsc70 in the presence of ATP [119].

Since other DnaJ homologues cannot substitute for auxilin
[121, 122], the clathrin-binding domain of auxilin is appar-
ently crucial to support uncoating by Hsc70. While auxilin
shares many properties with other J-proteins such as stim-
ulating ATP hydrolysis and ATP-dependent polymerization
of Hsc70 [117,119,123,124], it also shows two unique dif-
ferences. Auxilin strongly binds to Hsc70 in the presence of
ATP and induces polymerization stoichiometrically, while
other J-proteins induce polymerization catalytically [123].

A unique feature of auxilin is that it specifically presents
clathrin as a substrate to Hsc70 (Fig. 2). Clathrin uncoating
is initiated by auxilin first binding to assembled clathrin
triskelions, and then catalytically inducing Hsc70-ATP
binding to the auxilin–clathrin complex [117,119,120,125,
126]. Stimulation of ATP hydrolysis then forms a meta-
stable complex comprised of Hsc70-ADP and clathrin bas-
kets, which converts to a pre-steady-state clathrin–Hsc70-
ADP complex that releases clathrin triskelions from the
basket [123,126–128]. In the presence of ATP, a steady-
state complex forms containing clathrin, Hsc70-ATP, and
assembly proteins that ties up Hsc70, preventing further
uncoating [128]. This molecular model accords well with
the biphasic time course of clathrin uncoating [125,129–
131].

The role of Hsc70 in synaptic vesicle recycling, how-
ever, does not appear to be restricted to the uncoating
reaction per se (Fig. 2). Recent evidence suggests that
Hsc70 may also chaperone clathrin triskelions and assembly
proteins in a classical way to keep both depolymerized in
the cytosol, preventing abnormal sequestration of clathrin.

Fig. 2. A model of auxilin and Hsc70 function in synaptic vesicle recycling.
Auxilin initiates uncoating by recruiting Hsc70-ATP to clathrin-coated
vesicles. Stimulation of Hsc70-mediated ATP hydrolysis by auxilin rapidly
forms a meta-stable complex of Hsc70-ADP and a clathrin triskelion
associated with the clathrin lattice. Dissociation of triskelions from the
clathrin lattice is driven by conversion of the meta-stable complex to a
pre-steady-state complex. Following nucleotide exchange this pre-steady-
state complex is then transformed to a steady-state complex that dissociates
very slowly. The steady-state complex may chaperone triskelions to pre-
vent inappropriate sequestration of clathrin. Subsequently, Hsc70 may also
prime clathrin for coat formation. Modified after Refs. 119 and 128.
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Furthermore, Hsc70 may also have the potential to prime
clathrin triskelions, forming new clathrin-coated pits [128].
An important caveat for the role of Hsc70 in synaptic
vesicle recycling is that despite the numerous evidence
obtained byin vitro studies, there are no studies available
testing thein vivo significance of Hsc70 or auxilin at nerve
terminals. Thus, it remains to be seen whether Hsc70 and
auxilin are truly essential components in synaptic vesicle
recycling.

4. Do cysteine-string protein and Hsc70 cooperatively
mediate a late step of regulated vesicle fusion?

The vesicle-associated CSP represents a second member
of the J-protein family found at nerve terminals [132–135].
CSP was originally detected in neuronal cells ofDrosophila
[136], and subsequent studies showed that CSP is expressed
on synaptic vesicles in neurons as well as on secretory
vesicles in endocrine, neuroendocrine, and exocrine cells
[133]. CSP is conserved from invertebrates to humans and
features three conserved domains: an N-terminal J-domain,
a “linker domain,” and a centrally located cysteine-string
domain. The J-domain of CSP is evolutionarily conserved
down to the bacterial DnaJ proteins, which suggests a pos-
sible interaction of CSP with proteins of the Hsp70 family
[44,45]. Indeed, CSP forms a transient complex with bovine
Hsc70 and Hsp70in vitro, and stimulates their intrinsic
ATPase activity [137,138].

The signature domain of CSP is the unique cysteine-
string motif that contains 14 cysteines over a span of 24
amino acids in vertebrate CSP. These cysteines are mostly
palmitoylated [139], but complete chemical depalmitoyla-
tion does not displace CSP from membranes [140,141].
Mutational analysis suggests that the lipidated cysteine res-
idues are required to initiate vesicle membrane targeting but
not to maintain membrane association [141]. This is pre-
sumably accomplished by the hydrophobic nature of the
cysteine-string ensuring membrane association in the ab-
sence of lipidation [142]. Beyond membrane targeting, the
lipidated cysteine-string domain has been suggested to act
as a “fusion promoting agent” by switching the association
of the lipidated cysteines from the vesicular to the plasma
membrane [143]. Although this idea is intriguing, it is
unlikely to be correct since there is no evidence for repeated
cycles of CSP lipidation [144]. The third conserved domain
of CSP, the unique linker domain, is sandwiched between
the cysteine string and the J-domain at the N-terminus.
Although its molecular function is unknown, it appears to be
critical for CSP function in stimulated insulin secretion but
not for the activation of Hsc70 ATPase activity [145].

The significance of CSP in neurotransmitter release be-
came apparent by genetic studies inDrosophila.The dele-
tion of the entirecsp gene inDrosophila is semi-lethal—
only 4% of the expected flies develop to adulthood. Adult
survivors progressively exhibit uncoordinated motor behav-

ior, ending in paralysis that correlates with a loss of synaptic
transmission [146]. Recordings from mutant neuromuscular
junctions revealed that nerve-evoked neurotransmitter re-
lease is reduced by 50% at 22° and completely abolished
above 29° [147]. The loss of evoked neurotransmitter re-
lease incspmutants is counteracted by increasing extracel-
lular Ca21 levels or by accumulation of residual Ca21

during repetitive stimulation, suggesting that CSP primarily
increases the Ca21 sensitivity of the exocytotic machinery
[148]. The thermo-intolerant loss of CSP function in fly
deletion mutants parallels temperature-sensitive defects of
gene deletions in bacterial DnaJ proteins [149], suggesting
that target proteins of CSP action must be destabilized in the
absence of CSP, consistent with the idea that CSP chaper-
ones exocytotic signaling pathways. Thein vitro interaction
of CSP with Hsc70 originally implied a potential role of
CSP in vesicle recycling [1], since the only known function
of Hsc70 at the synaptic terminal has been the uncoating of
clathrin-coated vesicles. However, subsequent studies using
FM1–43 dye uptake and release assays to monitor the
dynamics of endocytosis and exocytosis inDrosophila csp
mutants excluded any defects of synaptic vesicle recycling
that could cause the loss of neurotransmitter release at
restrictive temperatures [150].

The genetic studies onDrosophila CSP are comple-
mented by studies using a variety of model systems for
regulated exocytosis. Presynaptic injection of anti-CSP an-
tibodies into Xenopusneuromuscular junctions inhibited
nerve-evoked neurotransmission, confirming a similar role
for CSP in vertebrates [151]. Studies using “slow secretion
systems” provide accumulating evidence that CSP is likely
to modulate a late step of exocytosis. Overexpression of
bovine CSP in neuroendocrine PC12 cells enhanced dopa-
mine release from permeabilized cells, while overexpres-
sion of CSP or CSP antibody injections in insulin-secreting
cell lines derived from pancreaticb-cells decreased insulin
release [145,152]. Moreover, reduction of CSP levels by the
expression of anti-sense mRNA reduced stimulated insulin
release in intact and in permeabilizedb-cell lines [153].
Although these findings appear paradoxical and require fur-
ther investigation, the deleterious effects of CSP suppres-
sion or overexpression persisted in permeabilized cells of
both systems, suggesting a direct role of CSP in exocytosis.
This idea was further strengthened by overexpression of
CSP in adrenal chromaffin cells, which not only reduced
exocytosis, but more significantly, slowed the kinetics of
single granule release events [86]. For comparison, overex-
pression of dominant-negativea-SNAP, which parallels
CSP in its role as cofactor, inhibited exocytosis but did not
affect the kinetics of single fusion events. Together, these
results suggest that CSP, unlikea-SNAP, plays a key role at
the level of the machinery mediating or regulating the fu-
sion pore [86].

Originally, CSP was hypothesized to physically link syn-
aptic vesicles and presynaptic Ca21 channels and to pro-
mote neurotransmitter release by increasing Ca21 channel
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activity at nerve terminals [154]. This idea has been sup-
ported by the co-expression of CSP mRNA with an RNA
fraction of Torpedo electric lobe in frog oocytes, which
modulated ectopically expressed N-type Ca21 channel cur-
rents [155]. Although several studies failed to demonstrate
binding of CSP to native Ca21 channels [156–158], CSP
has been found to bind the regulatory “synprint site” in the
cytoplasmic loop of presynaptic Ca21 channels [156, 159].
The synprint site mediates modulatory interactions of mul-
tiple synaptic proteins with Ca21 channels including syn-
taxin, synaptotagmin, and SNAP-25 [24]. Since CSP is
apparently an effective competitor of the syntaxin–synprint
site interactionin vitro, it has been suggested that CSP may
dissociate syntaxin from Ca21 channels and thereby indi-
rectly promote Ca21 channel activity [159].

The hypothesis that CSP primarily modulates presynap-
tic calcium channels is not supported by a recent calcium
imaging study ofDrosophilamutants, which suggests that
the loss of neurotransmitter release incsp mutants is pri-
marily caused by a defect of Ca21-regulated exocytosis
[148] and not by inactivation of presynaptic Ca21 channels,
as previously suggested [160]. These results accord with
other studies that found no evidence for regulation of pre-
synaptic Ca21 channels by CSP in PC12 cells, pancreatic
insulin secreting cells, and peptidergic synapses ofcspmu-
tantDrosophila[145,152,153,161,162]. The role of CSP at
nerve terminals is apparently more widespread than previ-
ously assumed. In addition to its direct role in exocytosis,
CSP appears to stabilize depolarization Ca21 entry and
Ca21 clearance, as indicated by increased evoked cytosolic
calcium levels and by increased calcium resting levels at
high temperatures in mutantDrosophila terminals lacking
CSP [148].

Biochemical and genetic studies provide compelling ar-

guments that CSP acts as a typical J-protein and functions as
a presynaptic co-chaperone in neurotransmission. CSP
binds and activates the ATPase activity of Hsp70 and Hsc70
through its J-domain, which is apparently essential and
sufficient for ATPase stimulation [137,138,145]. CSP bind-
ing to Hsp70/Hsc70 is specific as no binding occurs to
Hsp60, Hsp90, or NSF [137,163]. CSP acts as a classical
chaperone, preventing the aggregation of denatured model
substrate proteinsin vitro [164]. CSP and Hsc70 act syner-
gistically to prevent the aggregation of denatured proteinsin
vitro [138]. Deletion of thecspgene inDrosophilacauses a
primary defect in exocytosis that is thermo-intolerant such
that exocytosis progressively deteriorates further at higher
temperatures [146–148]. CSP co-immunoprecipitates with
the synaptic vesicle protein synaptobrevin/VAMP [156],
which lacks a secondary structure and thus exhibits the
features of an unfolded protein [165].

The co-chaperone features of CSP and the analysis of
CSP function in various model systems suggest that CSP
may coordinate sequential protein–protein interactions to
serve multiple functions, most prominently to mediate a late
step in exocytosis but also to stabilize the machinery of
Ca21 entry and Ca21 clearance. Thein vitro studies describ-
ing the CSP/Hsc70 interaction, together with thein vivo
analysis ofDrosophila cspmutations excluding a major
function of CSP in synaptic vesicle recycling, suggest an
additional and novel role of Hsc70 in exocytosis. This idea
is supported by loss of function mutations inDrosophila
Hsc70, which impair neurotransmitter release in a way
highly reminiscent ofcsp null mutations [166]. Thus far,
possible substrates of CSP include synaptobrevin [156],
syntaxin [159,167], and N- and P/Q-type Ca21 channels
[156,159]. Although thein vivo significance of most of
these CSP–substrate interactions remains to be established,
the in vitro andin vivo interaction of CSP with syntaxin and
the copurification of CSP with synaptobrevin are compati-
ble with a role for CSP in regulating SNARE complex-
associated protein interactions (Fig. 3).

5. Concluding remarks

Molecular chaperones have come a long way in over-
coming their original reputation as general household fold-
ing machinery, to take center stage as critical factors of
signaling pathways. The fast and high fidelity coupling of
nerve signaling and neurotransmitter exocytosis requires
that the participating components are rapidly recycled and
that they sustain an optimal conformation despite repeated
use. The numerous protein–protein interactions that are in-
volved in this process apparently require a sequential tran-
sition through several states of transient protein complexes
or protein conformations. Molecular chaperones fill the role
of supervising these specific transitions by binding to a
unique number of substrates, as exemplified by the SNAP/
NSF, auxilin/Hsc70, and CSP/Hsc70 chaperone machinery.

Fig. 3. A hypothetical model of CSP and Hsc70 function in synaptic vesicle
exocytosis. CSP is likely to recruit Hsc70 to synaptic vesicles mediating a
late step of exocytosis. CSP interacts with the v-SNARE synaptobrevin and
the t-SNARE syntaxin, suggesting that CSP may regulate interactions of
proteins (protein X) associated with the SNARE complex. Although the
synprint site of presynaptic calcium channels can interact with CSPin
vitro, it is an unlikely candidate to mediate a step at the level of the
machinery mediating or regulating the fusion pore as proposed for CSP.
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A rather interesting feature of all these systems is that the
enzymatically active component (ATPase) is cytoplasmic,
and, by itself, lacks any specificity for a particular signaling
pathway. The temporal and spatial specificity of either sys-
tem is uniquely specified by its participating cofactors and is
accomplished by their unique protein binding specificities
and/or membrane localizations. This intricate design allows
Hsc70 to specifically mediate at least two stages of the
synaptic vesicle cycle. Recruitment by auxilin accomplishes
vesicle uncoating, while recruitment by CSP may facilitate
a late step of exocytosis. Similarly, NSF apparently gains
specificity by using a combination of SNAPs to mediate
SNARE complex transitions and glutamate receptor expo-
sure on postsynaptic membranes. Future work will be nec-
essary to provide a better understanding of how these and
potentially other chaperones ensure a smooth passage
through the synaptic vesicle cycle. Without doubt, the focus
of attention will be on the role of the co-factors, which are
likely destined to be at the center of a higher order regula-
tion mechanism. The first evidence for such mechanisms
has been obtained for CSP that is up-regulated in rats during
long-lasting LiCl exposure, which is used to treat manic
depression in humans [167]. Knowing how chaperones pull
the strings behind the scenes will be crucial to expanding
our current knowledge about the molecular machinery un-
derlying regulated neurotransmitter release.
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